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1. STATISTICS

Revised September 2009 by G. Cowan (RHUL).

There are two main approaches to statistical inference, which
we may call frequentist and Bayesian. In frequentist statistics,
probability is interpreted as the frequency of the outcome of a
repeatable experiment. The most important tools in this framework
are parameter estimation, covered in Section 36.1, and statistical tests,
discussed in Section 36.2. Frequentist confidence intervals, which
are constructed so as to cover the true value of a parameter with
a specified probability, are treated in Section 36.3.2. Note that in
frequentist statistics one does not define a probability for a hypothesis
or for a parameter.

In Bayesian statistics, the interpretation of probability is more
general and includes degree of belief (called subjective probability).
One can then speak of a probability density function (p.d.f.) for a
parameter, which expresses one’s state of knowledge about where its
true value lies. Using Bayes’ theorem Eq. (31.4), the prior degree of
belief is updated by the data from the experiment. Bayesian methods
for interval estimation are discussed in Sections 36.3.1 and 36.3.2.6

Following common usage in physics, the word “error” is often
used in this chapter to mean “uncertainty.” More specifically it can
indicate the size of an interval as in “the standard error” or “error
propagation,” where the term refers to the standard deviation of an
estimator.

1.1. Parameter estimation

Here we review the frequentist approach to point estimationof

parameters. An estimator θ̂ (written with a hat) is a function of the
data whose value, the estimate, is intended as a meaningful guess for
the value of the parameter θ.

1.1.1. Estimators for mean, variance and median: Suppose
we have a set of N independent measurements, xi, assumed to be
unbiased measurements of the same unknown quantity µ with a
common, but unknown, variance σ2. Then

µ̂ =
1

N

N∑

i=1

xi (1.4)

σ̂2 =
1

N − 1

N∑

i=1

(xi − µ̂)2 (1.5)

are unbiased estimators of µ and σ2. The variance of µ̂ is σ2/N and

the variance of σ̂2 is

V
[
σ̂2

]
=

1

N

(
m4 − N − 3

N − 1
σ4

)
, (1.6)

where m4 is the 4th central moment of x. For Gaussian distributed
xi, this becomes 2σ4/(N − 1) for any N ≥ 2, and for large N , the

standard deviation of σ̂ (the “error of the error”) is σ/
√

2N . Again,
if the xi are Gaussian, µ̂ is an efficient estimator for µ, and the

estimators µ̂ and σ̂2 are uncorrelated. Otherwise the arithmetic mean
(1.4) is not necessarily the most efficient estimator.
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2 1. Statistics

If the xi have different, known variances σ2
i , then the weighted

average

µ̂ =
1

w

N∑

i=1

wixi (1.7)

is an unbiased estimator for µ with a smaller variance than an
unweighted average; here wi = 1/σ2

i and w =
∑

i wi. The standard
deviation of µ̂ is 1/

√
w.

1.1.2. The method of maximum likelihood: Suppose we have
a set of N measured quantities x = (x1, . . . , xN ) described by a
joint p.d.f. f(x; θ), where θ = (θ1, . . . , θn) is set of n parameters
whose values are unknown. The likelihood function is given by the
p.d.f. evaluated with the data x, but viewed as a function of
the parameters, i.e., L(θ) = f(x; θ). If the measurements xi are
statistically independent and each follow the p.d.f. f(x; θ), then the
joint p.d.f. for x factorizes and the likelihood function is

L (θ) =
N∏

i=1

f (xi; θ) . (1.8)

The method of maximum likelihood takes the estimators θ̂ to be those
values of θ that maximize L(θ).

Note that the likelihood function is not a p.d.f. for the parameters
θ; in frequentist statistics this is not defined. In Bayesian statistics,
one can obtain from the likelihood the posterior p.d.f. for θ, but this
requires multiplying by a prior p.d.f. (see Sec. 36.3.1).

It is usually easier to work with lnL, and since both are maximized
for the same parameter values θ, the maximum likelihood (ML)
estimators can be found by solving the likelihood equations,

∂ lnL

∂θi
= 0 , i = 1, . . . , n . (1.9)

In evaluating the likelihood function, it is important that any
normalization factors in the p.d.f. that involve θ be included.

The inverse V −1 of the covariance matrix Vij = cov[θ̂i, θ̂j ] for a set
of ML estimators can be estimated by using

(
V̂ −1

)

ij
= − ∂2 lnL

∂θi∂θj

∣∣∣∣
θ̂

. (1.10)

For finite samples, however, Eq. (1.10) can result in an underestimate
of the variances. In the large sample limit (or in a linear model with
Gaussian errors), L has a Gaussian form and lnL is (hyper)parabolic.
In this case, it can be seen that a numerically equivalent way of
determining s-standard-deviation errors is from the contour given by
the θ′ such that

lnL
(
θ′

)
= lnLmax − s2/2 , (1.11)

where ln Lmax is the value of lnL at the solution point (compare with
Eq. (36.58)). The extreme limits of this contour on the θi axis give
an approximate s-standard-deviation confidence interval for θi (see
Section 36.3.2.4).

1.1.3. The method of least squares: The method of least squares
(LS) coincides with the method of maximum likelihood in the following
special case. Consider a set of N independent measurements yi at
known points xi. The measurement yi is assumed to be Gaussian
distributed with mean F (xi; θ) and known variance σ2

i . The goal is
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to construct estimators for the unknown parameters θ. The likelihood
function contains the sum of squares

χ2 (θ) = −2 lnL (θ) + constant =

N∑

i=1

(yi − F (xi; θ))2

σ2
i

. (1.13)

The set of parameters θ which maximize L is the same as those which
minimize χ2.

The minimum of Equation (1.13) defines the least-squares estimators

θ̂ for the more general case where the yi are not Gaussian distributed
as long as they are independent. If they are not independent but
rather have a covariance matrix Vij = cov[yi, yj ], then the LS
estimators are determined by the minimum of

χ2 (θ) = (y − F (θ))T V −1 (y − F (θ)) , (1.14)

where y = (y1, . . . , yN ) is the vector of measurements, F (θ) is the
corresponding vector of predicted values (understood as a column
vector in (1.14)), and the superscript T denotes transposed (i.e., row)
vector.

In many practical cases, one further restricts the problem to the
situation where F (xi; θ) is a linear function of the parameters, i.e.,

F (xi; θ) =

m∑

j=1

θjhj (xi) . (1.15)

Here the hj(x) are m linearly independent functions, e.g.,

1, x, x2, . . . , xm−1, or Legendre polynomials. We require m < N
and at least m of the xi must be distinct.

Minimizing χ2 in this case with m parameters reduces to solving a
system of m linear equations. Defining Hij = hj(xi) and minimizing

χ2 by setting its derivatives with respect to the θi equal to zero gives
the LS estimators,

θ̂ =
(
HT V −1H

)
−1

HT V −1y ≡ Dy . (1.16)

The covariance matrix for the estimators Uij = cov[θ̂i, θ̂j ] is given by

U = DV DT =
(
HT V −1H

)
−1

. (1.17)

Expanding χ2(θ) about θ̂, one finds that the contour in parameter
space defined by

χ2 (θ) = χ2
(
θ̂
)

+ 1 = χ2
min + 1 (1.23)

has tangent planes located at approximately plus-or-minus-one

standard deviation σ
θ̂

from the LS estimates θ̂.

As the minimum value of the χ2 represents the level of agreement
between the measurements and the fitted function, it can be used for
assessing the goodness-of-fit; this is discussed further in Section 36.2.2.

1.1.5. Propagation of errors: Consider a set of n quantities
θ = (θ1, . . . , θn) and a set of m functions η(θ) = (η1(θ), . . . , ηm(θ)).

Suppose we have estimated θ̂ = (θ̂1, . . . , θ̂n), using, say, maximum-
likelihood or least-squares, and we also know or have estimated the

covariance matrix Vij = cov[θ̂i, θ̂j ]. The goal of error propagation is to
determine the covariance matrix for the functions, Uij = cov[η̂i, η̂j ],

where η̂ = η(θ̂ ). In particular, the diagonal elements Uii = V [η̂i] give
the variances. The new covariance matrix can be found by expanding

the functions η(θ) about the estimates θ̂ to first order in a Taylor
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4 1. Statistics

series. Using this one finds

Uij ≈
∑

k,l

∂ηi

∂θk

∂ηj

∂θl

∣∣∣∣
θ̂

Vkl . (1.29)

This can be written in matrix notation as U ≈ AV AT where the
matrix of derivatives A is

Aij =
∂ηi

∂θj

∣∣∣∣
θ̂

, (1.30)

and AT is its transpose. The approximation is exact if η(θ) is linear.

1.2. Statistical tests

1.2.1. Hypothesis tests: Consider an experiment whose outcome
is characterized by a vector of data x. A hypothesis is a statement
about the distribution of x. It could, for example, define completely
the p.d.f. for the data (a simple hypothesis), or it could specify only
the functional form of the p.d.f., with the values of one or more
parameters left open (a composite hypothesis).

A statistical test is a rule that states for which values of x a given
hypothesis (often called the null hypothesis, H0) should be rejected
in favor of its alternative H1. This is done by defining a region of
x-space called the critical region; if the outcome of the experiment
lands in this region, H0 is rejected, otherwise it is accepted.

Rejecting H0 if it is true is called an error of the first kind. The
probability for this to occur is called the size or significance level of
the test, α, which is chosen to be equal to some pre-specified value.
It can also happen that H0 is false and the true hypothesis is the
alternative, H1. If H0 is accepted in such a case, this is called an error
of the second kind, which will have some probability β. The quantity
1 − β is called the power of the test relative to H1.

Often one tries to construct a test to maximize power for a given
significance level, i.e., to maximize the signal efficiency for a given
significance level. The Neyman–Pearson lemma states that this is done
by defining the acceptance region such that, for x in that region, the
ratio of p.d.f.s for the hypotheses H1 (signal) and H0 (background),

λ (x) =
f (x|H1)

f (x|H0)
, (1.31)

is greater than a given constant, the value of which is chosen to
give the desired signal efficiency. Here H0 and H1 must be simple
hypotheses, i.e., they should not contain undetermined parameters.
The lemma is equivalent to the statement that (1.31) represents the
test statistic with which one may obtain the highest signal efficiency
for a given purity for the selected sample. It can be difficult in
practice, however, to determine λ(x), since this requires knowledge of
the joint p.d.f.s f(x|H0) and f(x|H1).

In the usual case where the likelihood ratio (1.31) cannot be
used explicitly, there exist a variety of other multivariate classifiers
that effectively separate different types of events. Methods often
used in HEP include neural networks or Fisher discriminants (see
[10]). Recently, further classification methods from machine-learning
have been applied in HEP analyses; these include probability density
estimation (PDE) techniques, kernel-based PDE (KDE or Parzen
window), support vector machines, and decision trees. Techniques such
as “boosting” and “bagging” can be applied to combine a number of
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1. Statistics 5

classifiers into a stronger one with greater stability with respect to
fluctuations in the training data.

1.2.2. Significance tests: Often one wants to quantify the level
of agreement between the data and a hypothesis without explicit
reference to alternative hypotheses. This can be done by defining a
statistic t, which is a function of the data whose value reflects in some
way the level of agreement between the data and the hypothesis.

The hypothesis in question, say, H0, will determine the p.d.f.
g(t|H0) for the statistic. The significance of a discrepancy between the
data and what one expects under the assumption of H0 is quantified
by giving the p-value, defined as the probability to find t in the region
of equal or lesser compatibility with H0 than the level of compatibility
observed with the actual data. For example, if t is defined such that
large values correspond to poor agreement with the hypothesis, then
the p-value would be

p =

∫
∞

tobs

g (t|H0) dt , (1.32)

where tobs is the value of the statistic obtained in the actual
experiment. The p-value should not be confused with the size
(significance level) of a test, or the confidence level of a confidence
interval (Section 36.3), both of which are pre-specified constants.

The p-value is a function of the data, and is therefore itself a
random variable. If the hypothesis used to compute the p-value is
true, then for continuous data, p will be uniformly distributed between
zero and one. Note that the p-value is not the probability for the
hypothesis; in frequentist statistics, this is not defined. Rather, the
p-value is the probability, under the assumption of a hypothesis H0, of
obtaining data at least as incompatible with H0 as the data actually
observed.

When estimating parameters using the method of least squares, one
obtains the minimum value of the quantity χ2 (1.13). This statistic
can be used to test the goodness-of-fit, i.e., the test provides a
measure of the significance of a discrepancy between the data and the
hypothesized functional form used in the fit. It may also happen that
no parameters are estimated from the data, but that one simply wants
to compare a histogram, e.g., a vector of Poisson distributed numbers
n = (n1, . . . , nN ), with a hypothesis for their expectation values
νi = E[ni]. As the distribution is Poisson with variances σ2

i = νi, the

χ2 (1.13) becomes Pearson’s χ2 statistic,

χ2 =
N∑

i=1

(ni − νi)
2

νi
. (1.34)

If the hypothesis ν = (ν1, . . . , νN ) is correct, and if the expected
values νi in (1.34) are sufficiently large (in practice, this will be a
good approximation if all νi > 5), then the χ2 statistic will follow
the χ2 p.d.f. with the number of degrees of freedom equal to the
number of measurements N minus the number of fitted parameters.
The minimized χ2 from Eq. (1.13) also has this property if the
measurements yi are Gaussian.

Assuming the goodness-of-fit statistic follows a χ2 p.d.f., the p-value
for the hypothesis is then

p =

∫
∞

χ2
f (z; nd) dz , (1.35)
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Figure 1.1: One minus the χ2 cumulative distribution,
1 − F (χ2; n), for n degrees of freedom. This gives the p-value
for the χ2 goodness-of-fit test as well as one minus the coverage
probability for confidence regions (see Sec. 36.3.2.4).

where f(z; nd) is the χ2 p.d.f. and nd is the appropriate number of
degrees of freedom. Values can be obtained from Fig. 36.1 or from the
CERNLIB routine PROB or the ROOT function TMath::Prob.

Since the mean of the χ2 distribution is equal to nd, one expects
in a “reasonable” experiment to obtain χ2 ≈ nd. Hence the quantity
χ2/nd is sometimes reported. Since the p.d.f. of χ2/nd depends on
nd, however, one must report nd as well if one wishes to determine
the p-value. The p-values obtained for different values of χ2/nd are
shown in Fig. 36.2.

1.2.3. Bayesian model selection: In Bayesian statistics, all of
one’s knowledge about a model is contained in its posterior probability,
which one obtains using Bayes’ theorem. Thus one could reject a
hypothesis H if its posterior probability P (H |x) is sufficiently small.
The difficulty here is that P (H |x) is proportional to the prior
probability P (H), and there will not be a consensus about the prior
probabilities for the existence of new phenomena. Nevertheless one
can construct a quantity called the Bayes factor (described below),
which can be used to quantify the degree to which the data prefer one
hypothesis over another, and is independent of their prior probabilities.

Consider two models (hypotheses), Hi and Hj , described by vectors
of parameters θi and θj , respectively. Some of the components will
be common to both models and others may be distinct. The full prior
probability for each model can be written in the form

π (Hi, θi) = P (Hi)π (θi|Hi) , (1.36)

Here P (Hi) is the overall prior probability for Hi, and π(θi|Hi) is
the normalized p.d.f. of its parameters. For each model, the posterior
probability is found using Bayes’ theorem,

P (Hi|x) =

∫
L (x|θi, Hi)P (Hi)π (θi|Hi) dθi

P (x)
, (1.37)
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Figure 1.2: The ‘reduced’ χ2, equal to χ2/n, for n degrees
of freedom. The curves show as a function of n the χ2/n that
corresponds to a given p-value.

where the integration is carried out over the internal parameters θi
of the model. The ratio of posterior probabilities for the models is
therefore

P (Hi|x)

P
(
Hj |x

) =

∫
L (x|θi, Hi)π (θi|Hi) dθi∫

L
(
x|θj , Hj

)
π

(
θj |Hj

)
dθj

P (Hi)

P
(
Hj

) . (1.38)

The Bayes factor is defined as

Bij =

∫
L (x|θi, Hi)π (θi|Hi) dθi∫

L
(
x|θj , Hj

)
π

(
θj |Hj

)
dθj

. (1.39)

This gives what the ratio of posterior probabilities for models i and
j would be if the overall prior probabilities for the two models were
equal. If the models have no nuisance parameters i.e., no internal
parameters described by priors, then the Bayes factor is simply the
likelihood ratio. The Bayes factor therefore shows by how much the
probability ratio of model i to model j changes in the light of the data,
and thus can be viewed as a numerical measure of evidence supplied
by the data in favour of one hypothesis over the other.

Although the Bayes factor is by construction independent of the
overall prior probabilities P (Hi) and P (Hj), it does require priors
for all internal parameters of a model, i.e., one needs the functions
π(θi|Hi) and π(θj |Hj). In a Bayesian analysis where one is only
interested in the posterior p.d.f. of a parameter, it may be acceptable
to take an unnormalizable function for the prior (an improper prior)
as long as the product of likelihood and prior can be normalized. But
improper priors are only defined up to an arbitrary multiplicative
constant, which does not cancel in the ratio (1.39). Furthermore,
although the range of a constant normalized prior is unimportant for
parameter determination (provided it is wider than the likelihood),
this is not so for the Bayes factor when such a prior is used for only
one of the hypotheses. So to compute a Bayes factor, all internal
parameters must be described by normalized priors that represent
meaningful probabilities over the entire range where they are defined.
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8 1. Statistics

An exception to this rule may be considered when the identical
parameter appears in the models for both numerator and denominator
of the Bayes factor. In this case one can argue that the arbitrary
constants would cancel. One must exercise some caution, however, as
parameters with the same name and physical meaning may still play
different roles in the two models. Both integrals in equation (1.39) are
of the form

m =

∫
L (x|θ)π (θ) dθ , (1.40)

which is called the marginal likelihood (or in some fields called
the evidence). A review of Bayes factors including a discussion of
computational issues is Ref. [30].

1.3. Intervals and limits

When the goal of an experiment is to determine a parameter θ,
the result is usually expressed by quoting, in addition to the point
estimate, some sort of interval which reflects the statistical precision
of the measurement. In the simplest case, this can be given by the

parameter’s estimated value θ̂ plus or minus an estimate of the

standard deviation of θ̂, σ
θ̂
. If, however, the p.d.f. of the estimator

is not Gaussian or if there are physical boundaries on the possible
values of the parameter, then one usually quotes instead an interval
according to one of the procedures described below.

1.3.1. Bayesian intervals: As described in Sec. 36.1.4, a Bayesian
posterior probability may be used to determine regions that will have
a given probability of containing the true value of a parameter. In the
single parameter case, for example, an interval (called a Bayesian or
credible interval) [θlo, θup] can be determined which contains a given
fraction 1 − α of the posterior probability, i.e.,

1 − α =

∫ θup

θlo

p (θ|x) dθ . (1.41)

Sometimes an upper or lower limit is desired, i.e., θlo can be set to
zero or θup to infinity. In other cases, one might choose θlo and θup
such that p(θ|x) is higher everywhere inside the interval than outside;
these are called highest posterior density (HPD) intervals. Note that
HPD intervals are not invariant under a nonlinear transformation of
the parameter.

If a parameter is constrained to be non-negative, then the prior
p.d.f. can simply be set to zero for negative values. An important
example is the case of a Poisson variable n, which counts signal events
with unknown mean s, as well as background with mean b, assumed
known. For the signal mean s, one often uses the prior

π (s) =

{
0 s < 0
1 s ≥ 0

. (1.42)

In the absence of a clear discovery, (e.g., if n = 0 or if in any case n
is compatible with the expected background), one usually wishes to
place an upper limit on s (see, however, Sec. 36.3.2.6 on “flip-flopping”
concerning frequentist coverage). Using the likelihood function for
Poisson distributed n,

L (n|s) =
(s + b)n

n!
e−(s+b) , (1.43)

along with the prior (1.42) in (36.24) gives the posterior density for
s. An upper limit sup at confidence level (or here, rather, credibility
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level) 1 − α can be obtained by requiring

1 − α =

∫ sup

−∞

p (s|n) ds =

∫ sup
−∞

L (n|s) π (s) ds∫
∞

−∞
L (n|s) π (s) ds

, (1.44)

where the lower limit of integration is effectively zero because of the
cut-off in π(s). By relating the integrals in Eq. (1.44) to incomplete
gamma functions, the equation reduces to

α = e−sup

∑n
m=0

(
sup + b

)m
/m!∑n

m=0 bm/m!
. (1.45)

This must be solved numerically for the limit sup. For the special

case of b = 0, the sums can be related to the quantile F−1
χ2 of the χ2

distribution (inverse of the cumulative distribution) to give

sup = 1
2F−1

χ2 (1 − α; nd) , (1.46)

where the number of degrees of freedom is nd = 2(n+1). The quantile
of the χ2 distribution can be obtained using the CERNLIB routine
CHISIN, or the ROOT function TMath::ChisquareQuantile. It so
happens that for the case of b = 0, the upper limits from Eq. (1.46)
coincide numerically with the values of the frequentist upper limits
discussed in Section 36.3.2.5. Values for 1−α = 0.9 and 0.95 are given
by the values νup in Table 36.3.

As in any Bayesian analysis, it is important to show how the result
would change if one uses different prior probabilities. For example,
one could consider the Jeffreys prior as described in Sec. 36.1.4. For
this problem one finds the Jeffreys prior π(s) ∝ 1/

√
s + b for s ≥ 0 and

zero otherwise. As with the constant prior, one would not regard this
as representing one’s prior beliefs about s, both because it is improper
and also as it depends on b. Rather it is used with Bayes’ theorem to
produce an interval whose frequentist properties can be studied.

1.3.2. Frequentist confidence intervals:

1.3.2.1. The Neyman construction for confidence intervals: Con-
sider a p.d.f. f(x; θ) where x represents the outcome of the experiment
and θ is the unknown parameter for which we want to construct a
confidence interval. The variable x could (and often does) represent
an estimator for θ. Using f(x; θ), we can find for a pre-specified
probability 1− α, and for every value of θ, a set of values x1(θ, α) and
x2(θ, α) such that

P (x1 < x < x2; θ) = 1 − α =

∫ x2

x1

f (x; θ) dx . (1.47)

This is illustrated in Fig. 36.3: a horizontal line segment [x1(θ, α),
x2(θ, α)] is drawn for representative values of θ. The union of such
intervals for all values of θ, designated in the figure as D(α), is known
as the confidence belt. Typically the curves x1(θ, α) and x2(θ, α) are
monotonic functions of θ, which we assume for this discussion.

Upon performing an experiment to measure x and obtaining a value
x0, one draws a vertical line through x0. The confidence interval for θ
is the set of all values of θ for which the corresponding line segment
[x1(θ, α), x2(θ, α)] is intercepted by this vertical line. Such confidence
intervals are said to have a confidence level (CL) equal to 1 − α.

Now suppose that the true value of θ is θ0, indicated in the figure.
We see from the figure that θ0 lies between θ1(x) and θ2(x) if and
only if x lies between x1(θ0) and x2(θ0). The two events thus have
the same probability, and since this is true for any value θ0, we can
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Figure 1.3: Construction of the confidence belt (see text).

drop the subscript 0 and obtain
1 − α = P (x1 (θ) < x < x2 (θ)) = P (θ2 (x) < θ < θ1 (x)) . (1.48)

In this probability statement, θ1(x) and θ2(x), i.e., the endpoints of
the interval, are the random variables and θ is an unknown constant.
If the experiment were to be repeated a large number of times, the
interval [θ1, θ2] would vary, covering the fixed value θ in a fraction
1 − α of the experiments.

The condition of coverage in Eq. (1.47) does not determine x1 and
x2 uniquely, and additional criteria are needed. The most common
criterion is to choose central intervals such that the probabilities
excluded below x1 and above x2 are each α/2. In other cases, one
may want to report only an upper or lower limit, in which case the
probability excluded below x1 or above x2 can be set to zero. Another
principle based on likelihood ratio ordering for determining which
values of x should be included in the confidence belt is discussed in
Sec. 1.3.2.2

When the observed random variable x is continuous, the coverage
probability obtained with the Neyman construction is 1−α, regardless
of the true value of the parameter. If x is discrete, however, it is not
possible to find segments [x1(θ, α), x2(θ, α)] that satisfy Eq. (1.47)
exactly for all values of θ. By convention, one constructs the confidence
belt requiring the probability P (x1 < x < x2) to be greater than or
equal to 1 − α. This gives confidence intervals that include the true
parameter with a probability greater than or equal to 1 − α.

1.3.2.4. Gaussian distributed measurements: An important example
of constructing a confidence interval is when the data consists of a
single random variable x that follows a Gaussian distribution; this is
often the case when x represents an estimator for a parameter and
one has a sufficiently large data sample. If there is more than one
parameter being estimated, the multivariate Gaussian is used. For the
univariate case with known σ,

1 − α =
1√
2πσ

∫ µ+δ

µ−δ
e−(x−µ)2/2σ2

dx = erf

(
δ√
2 σ

)
(1.53)
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1. Statistics 11

is the probability that the measured value x will fall within ±δ of the
true value µ. From the symmetry of the Gaussian with respect to x
and µ, this is also the probability for the interval x ± δ to include
µ. Fig. 36.4 shows a δ = 1.64σ confidence interval unshaded. The
choice δ = σ gives an interval called the standard error which has
1 − α = 68.27% if σ is known. Values of α for other frequently used
choices of δ are given in Table 36.1.

−3 −2 −1 0 1 2 3

f (x; µ,σ)

α /2α /2

(x−µ) /σ

1−α

Figure 1.4: Illustration of a symmetric 90% confidence interval
(unshaded) for a measurement of a single quantity with Gaussian
errors. Integrated probabilities, defined by α, are as shown.

Table 1.1: Area of the tails α outside ±δ from the mean of a
Gaussian distribution.

α δ α δ

0.3173 1σ 0.2 1.28σ

4.55 ×10−2 2σ 0.1 1.64σ

2.7 ×10−3 3σ 0.05 1.96σ

6.3×10−5 4σ 0.01 2.58σ

5.7×10−7 5σ 0.001 3.29σ

2.0×10−9 6σ 10−4 3.89σ

We can set a one-sided (upper or lower) limit by excluding above
x + δ (or below x − δ). The values of α for such limits are half the
values in Table 1.1.

The relation (1.53) can be re-expressed using the cumulative
distribution function for the χ2 distribution as

α = 1 − F
(
χ2; n

)
, (1.54)

for χ2 = (δ/σ)2 and n = 1 degree of freedom. This can be obtained
from Fig. 1.1 on the n = 1 curve or by using the CERNLIB routine
PROB or the ROOT function TMath::Prob.

For multivariate measurements of, say, n parameter estimates θ̂ =

(θ̂1, . . . , θ̂n), one requires the full covariance matrix Vij = cov[θ̂i, θ̂j ],
which can be estimated as described in Sections 1.1.2 and 1.1.3. Under
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12 1. Statistics

fairly general conditions with the methods of maximum-likelihood
or least-squares in the large sample limit, the estimators will be
distributed according to a multivariate Gaussian centered about the
true (unknown) values θ, and furthermore, the likelihood function
itself takes on a Gaussian shape.

The standard error ellipse for the pair (θ̂i, θ̂j) is shown in Fig. 36.5,

corresponding to a contour χ2 = χ2
min + 1 or lnL = lnLmax − 1/2.

The ellipse is centered about the estimated values θ̂, and the tangents
to the ellipse give the standard deviations of the estimators, σi and
σj . The angle of the major axis of the ellipse is given by

tan 2φ =
2ρijσiσj

σ2
j − σ2

i

, (1.55)

where ρij = cov[θ̂i, θ̂j ]/σiσj is the correlation coefficient.

The correlation coefficient can be visualized as the fraction of the
distance σi from the ellipse’s horizontal centerline at which the ellipse
becomes tangent to vertical, i.e., at the distance ρijσi below the
centerline as shown. As ρij goes to +1 or −1, the ellipse thins to a
diagonal line.

θ i

φ

θ i

jσ

θj

iσ

jσ

iσ

^

θ j
^

ij   iρ  σ

innerσ



Figure 1.5: Standard error ellipse for the estimators θ̂i and θ̂j .
In this case the correlation is negative.

As in the single-variable case, because of the symmetry of the

Gaussian function between θ and θ̂, one finds that contours of constant
lnL or χ2 cover the true values with a certain, fixed probability. That
is, the confidence region is determined by

lnL (θ) ≥ lnLmax − ∆ lnL , (1.56)
or where a χ2 has been defined for use with the method of
least-squares,

χ2 (θ) ≤ χ2
min + ∆χ2 . (1.57)

Values of ∆χ2 or 2∆ lnL are given in Table 36.2 for several values of
the coverage probability and number of fitted parameters.

For finite data samples, the probability for the regions determined
by equations (1.56) or (1.57) to cover the true value of θ will depend
on θ, so these are not exact confidence regions according to our
previous definition.

1.3.2.5. Poisson or binomial data: Another important class of
measurements consists of counting a certain number of events, n. In
this section, we will assume these are all events of the desired type,
i.e., there is no background. If n represents the number of events
produced in a reaction with cross section σ, say, in a fixed integrated
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1. Statistics 13

Table 1.2: ∆χ2 or 2∆ lnL corresponding to a coverage
probability 1 − α in the large data sample limit, for joint
estimation of m parameters.

(1 − α) (%) m = 1 m = 2 m = 3

68.27 1.00 2.30 3.53

90. 2.71 4.61 6.25

95. 3.84 5.99 7.82

95.45 4.00 6.18 8.03

99. 6.63 9.21 11.34

99.73 9.00 11.83 14.16

luminosity L, then it follows a Poisson distribution with mean ν = σL.
If, on the other hand, one has selected a larger sample of N events
and found n of them to have a particular property, then n follows
a binomial distribution where the parameter p gives the probability
for the event to possess the property in question. This is appropriate,
e.g., for estimates of branching ratios or selection efficiencies based on
a given total number of events.

For the case of Poisson distributed n, the upper and lower limits on
the mean value ν can be found from the Neyman procedure to be

νlo = 1
2F−1

χ2 (αlo; 2n) , (1.59a)

νup = 1
2F−1

χ2

(
1 − αup; 2 (n + 1)

)
, (1.59b)

where the upper and lower limits are at confidence levels of 1−αlo and

1 − αup, respectively, and F−1
χ2 is the quantile of the χ2 distribution

(inverse of the cumulative distribution). The quantiles F−1
χ2 can

be obtained from standard tables or from the CERNLIB routine
CHISIN. For central confidence intervals at confidence level 1 − α, set
αlo = αup = α/2.

It happens that the upper limit from Eq. (1.59a) coincides
numerically with the Bayesian upper limit for a Poisson parameter,
using a uniform prior p.d.f. for ν. Values for confidence levels of 90%
and 95% are shown in Table 1.3. For the case of binomially distributed
n successes out of N trials with probability of success p, the upper
and lower limits on p are found to be

plo =
nF−1

F [αlo; 2n, 2 (N − n + 1)]

N − n + 1 + nF−1
F [αlo; 2n, 2 (N − n + 1)]

, (1.60a)

pup =
(n + 1)F−1

F

[
1 − αup; 2 (n + 1) , 2 (N − n)

]

(N − n) + (n + 1)F−1
F

[
1 − αup; 2 (n + 1) , 2 (N − n)

] .(1.60b)

Here F−1
F is the quantile of the F distribution (also called the

Fisher–Snedecor distribution; see [4]).

1.3.2.6. Difficulties with intervals near a boundary:

A number of issues arise in the construction and interpretation
of confidence intervals when the parameter can only take on values
in a restricted range. Important examples are where the mean of
a Gaussian variable is constrained on physical grounds to be non-
negative and where the experiment finds a Poisson-distributed number
of events, n, which includes both signal and background. Application
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14 1. Statistics

Table 1.3: Lower and upper (one-sided) limits for the mean ν
of a Poisson variable given n observed events in the absence of
background, for confidence levels of 90% and 95%.

1 − α =90% 1 − α =95%

n νlo νup νlo νup

0 – 2.30 – 3.00

1 0.105 3.89 0.051 4.74

2 0.532 5.32 0.355 6.30

3 1.10 6.68 0.818 7.75

4 1.74 7.99 1.37 9.15

5 2.43 9.27 1.97 10.51

6 3.15 10.53 2.61 11.84

7 3.89 11.77 3.29 13.15

8 4.66 12.99 3.98 14.43

9 5.43 14.21 4.70 15.71

10 6.22 15.41 5.43 16.96

of some standard recipes can lead to intervals that are partially or
entirely in the unphysical region. Furthermore, if the decision whether
to report a one- or two-sided interval is based on the data, then the
resulting intervals will not in general cover the parameter with the
stated probability 1 − α.

Several problems with such intervals are overcome by using the
unified approach of Feldman and Cousins [31]. Properties of these
intervals are described further in the Review. Table 36.4 gives the
unified confidence intervals [ν1, ν2] for the mean of a Poisson variable
given n observed events in the absence of background, for confidence
levels of 90% and 95%. The values of 1 − α given here refer to the
coverage of the true parameter by the whole interval [ν1, ν2]. In
Table 1.3 for the one-sided upper and lower limits, however, 1 − α
referred to the probability to have individually νup ≥ ν or νlo ≤ ν.

Another possibility is to construct a Bayesian interval as described
in Section 1.3.1. The presence of the boundary can be incorporated
simply by setting the prior density to zero in the unphysical region.
Advantages and pitfalls of this approach are discussed further in the
Review.

Another alternative is presented by the intervals found from the
likelihood function or χ2 using the prescription of Equations (1.56)
or (1.57). As in the case of the Bayesian intervals, the coverage
probability is not, in general, independent of the true parameter.
Furthermore, these intervals can for some parameter values undercover.

In any case it is important to report sufficient information so that
the result can be combined with other measurements. Often this
means giving an unbiased estimator and its standard deviation, even
if the estimated value is in the unphysical region. It is also useful
to report the likelihood function or an appropriate summary of it.
Although this by itself is not sufficient to construct a frequentist
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Table 1.4: Unified confidence intervals [ν1, ν2] for a the mean
of a Poisson variable given n observed events in the absence of
background, for confidence levels of 90% and 95%.

1 − α =90% 1 − α =95%

n ν1 ν2 ν1 ν2

0 0.00 2.44 0.00 3.09

1 0.11 4.36 0.05 5.14

2 0.53 5.91 0.36 6.72

3 1.10 7.42 0.82 8.25

4 1.47 8.60 1.37 9.76

5 1.84 9.99 1.84 11.26

6 2.21 11.47 2.21 12.75

7 3.56 12.53 2.58 13.81

8 3.96 13.99 2.94 15.29

9 4.36 15.30 4.36 16.77

10 5.50 16.50 4.75 17.82

confidence interval, it can be used to find the Bayesian posterior
probability density for any desired prior p.d.f.

Further discussion and all references may be found in the full Review
of Particle Physics; the equation and reference numbering corresponds
to that version.
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